BODY SHAPE METRICS AND ORGANISMAL EVOLUTION

LORRAINE M. CHERRY,^{1,5} SUSAN M. CASE,² JOSEPH G. KUNKEL,³ JEFF S. WYLES^{1,4} AND ALLAN C. WILSON¹

¹Department of Biochemistry, University of California, Berkeley, California 94720 ²Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138 ³Department of Zoology, University of Massachusetts, Amherst, Massachusetts 01003 and ⁴Department of Biology, University of Houston, Houston, Texas 77004

Received December 12, 1980. Revised December 31, 1981

It is becoming increasingly desirable to study organismal evolution in a quantitative way. The last decade witnessed the development and application of methods for quantifying molecular evolution (Lewontin, 1974; Nei, 1975; Wilson et al., 1977a), karyotypic evolution (Wilson et al., 1974, 1975, 1977b; Bengtsson, 1980; Maruyama and Imai, 1981) and speciation (Stanley, 1975, 1979; Levin and Wilson, 1976; Bush et al., 1977). A quantitative examination of the relation between these types of evolution and organismal evolution will thus become possible when a convenient method for measuring degree of difference at the organismal level has been developed. Such a method will permit more rigorous testing of hypotheses about the mechanism of organismal evolution than was possible with the more qualitative approaches of earlier workers (e.g., Mavr, 1963; Dobzhansky, 1970; Wilson et al., 1974; Stanley, 1979).

Two basic methods—quantal and quantitative—are available for the numerical comparison of whole organisms. Quantal (i.e., discrete) traits seem unsuitable for estimating overall degree of difference at the organismal level for the reasons given by Cherry et al. (1979). Furthermore, numerical taxonomists, the chief users of quantal methods, are more concerned with delineating and discriminating among closely related taxa (Sneath and Sokal, 1973) and with cladistic analysis (Hennig, 1966) than with the measurement of overall morphological difference.

Ouantitative traits seem more appropriate for the study of morphological distance (Cherry et al., 1979). Such traits fall in the domain of morphometrics (Blackith and Reyment, 1971). Quantitative geneticists have developed the most explicit approaches to explaining the genetic and environmental sources of quantitative variation within species (Mather and Jinks, 1971). Morphometrics has also been applied to the interpretation of differences between species, forming a bridge between the study of physiological function, development and the evolutionary forces that have been involved in anatomical change (Oxnard, 1973; Gould, 1977; Bookstein, 1978). Although this approach has often concentrated on a particular body part such as the hominoid skull (e.g., Howells, 1973), there has been a growing interest in the morphometric comparison of whole organisms (Cherry et al., 1978; Oxnard, 1979; Douglas and Avise, 1982).

Our approach makes use of quantitative linear traits that enabled previous workers to compare the body shapes of frogs (Jameson et al., 1966; Jameson and Richmond, 1971; Cherry et al., 1978). The shape metric introduced by Cherry et al. (1978) has been termed the M statistic (Atchley, 1980). This metric was evaluated by comparison with the classical taxonomic hierarchy, which was assumed to summarize the intuitive judgements of classical taxonomists about overall degree of morphological difference among organisms. The striking result was a strong correlation between M (i.e., degree of differ-

⁵ Present address: Department of Cell Biology, University of Texas System Cancer Center, M.D. Anderson Hospital and Tumor Institute, Texas Medical Center, Houston, Texas 77030.

ence in body shape) and distance in the taxonomic hierarchy (Cherry et al., 1978). The implication was that M may be a measure related to degree of difference at the organismal level.

In the present article the same approach is applied to a broader selection of tetrapod vertebrates. Furthermore, since public debate (Cherry et al., 1979; Findley, 1979; Atchley, 1980; Kunkel et al., 1980) has called into question the adequacy of M and suggested that Mahalanobis distance is a more appropriate metric, we now compare the M statistic to three other metrics (including Mahalanobis distance) for estimating body shape difference. These comparisons are based on more than 20,000 measurements taken on 184 taxa of mammals, lizards and frogs. The metrics differ from one another according to the amount of information and expense required for their computation. We present empirical evidence that simple metrics, which do not correct mathematically for trait correlation, currently provide the better estimates of morphological distance.

We also illustrate the potential value of simple metrics for examining the mechanism of organismal evolution, by employing the proportional distance (Δ) to conduct a preliminary test of the hypothesis that morphological change is concentrated in speciation events.

MATERIALS AND METHODS

Specimens.—Mammalian measurements were taken on skeletons located at the Museum of Vertebrate Zoology (Berkeley), the American Museum of Natural History (New York), Harvard Medical School (Boston), the University of California at San Diego (La Jolla), and the University of California at Davis. Frog measurements were taken on whole specimens located at the American Museum of Natural History, the Museum of Vertebrate Zoology, the Museum of Comparative Zoology (Cambridge), University of Michigan Museum of Zoology (Ann Arbor), and the United States National Museum (Washington, D.C.). Lizard measurements were taken on whole specimens located at the Museum of Vertebrate Zoology.

The taxa used in this study are listed in the Appendix, Table 1. Because of space limitations, we do not list the museum numbers, sex or age of any specimen. For each taxon, the specimens examined were adult and the two sexes were represented about equally. (Sexual dimorphism will be the subject of a separate publication.)

Measurements.—Eight linear traits measured on each specimen were head width, head length, eye to nostril, nostril to lip, shank length, forearm length, toe length, and length of the vertebral column. These traits, as measured on mammalian skeletons, are described in Cherry et al. (1978). The frog traits are described in Jameson et al. (1966). The traits measured on lizards are similar to those used in frogs, with the exceptions mentioned below.

While we aimed at measuring homologous traits, this criterion was not always strictly met. Practical considerations dictated that closely related, but not strictly homologous, measurements be taken in some cases. Thus, toe length is defined as the maximum length of the fourth toe measured from the proximal side of the metatarsal tubercle in frogs; as the length of the third metatarsal in mammals; and as the length of the foot, measured from the distal end of the tibia to the distal end of the longest toe in lizards.

Calculation of Relative Trait Lengths.— In order to concentrate on shape changes alone and ignore size changes, the trait lengths from each individual were normalized. For each individual, j, a given trait length, a_{ij} , was divided by the sum of all p trait lengths in that individual. The resulting value, x_{ij} , is termed the relative trait length:

$$x_{ij} = a_{ij} \left(\sum_{i=1}^{p} a_{ij} \right)^{-1}$$
. (1)

To calculate for a group of n individuals the mean value of the relative trait length, x_i , one sums the x_{ij} values over all n individuals and divides the sum by n:

$$x_i = n^{-1} \sum_{j=1}^n x_{ij}.$$
 (2)

The units in which the x_i values are expressed are parts per ten thousand, eliminating any decimal remainder by rounding off (see Appendix, Table 1). All further manipulation is of these transformed data.

Description of the Metrics.—One statistic which figures heavily in many of the metrics used is the mean difference, d_i , between trait *i* in species X and Y, for traits i = 1, 2, ..., p:

$$d_i = x_i - y_i \tag{3}$$

where x and y are the respective means of the *i*th relative trait length in species X and Y, respectively.

The four distance metrics considered here differ from one another in the amount of information which must be retained from the original data set. Manhattan distance (Farris, 1972), H, is computed from the d_i values with equation 4:

$$H = 100 \sum_{i=1}^{p} |d_i|.$$
 (4)

The proportional distance, Δ , is related to the Canberra metric (Sneath and Sokal, 1973):

$$\Delta = 200p^{-1}\sum_{i=1}^{p} |d_i| (x_i + y_i)^{-1}.$$
 (5)

Both means and variances of the relative traits are required for the computation of the previously described M statistic (Cherry et al., 1978):

$$M = p^{-1} \sum_{i=1}^{p} \left| d_i \right| \sigma_i^{-1}.$$
 (6)

Mahalanobis distance (D), a multivariate measure of distance, requires estimation of means, variances and covariances (Mahalanobis, 1936). It is most conveniently described in terms of matrix algebra. If dis a $p \times 1$ column vector of the trait differences, d_i , defined in equation 3, and S is a $p \times p$ residual covariance matrix for traits in the two species, X and Y, then the Mahalanobis distance for the two species is given by the matrix algebraic equation:

$$D = \sqrt{d'S^{-1}d}.$$
 (7)

Since the relative trait lengths sum to ten thousand, by definition, a full $p \times p$ covariance matrix would be algebraically singular and not allow an inverse to be calculated. For this reason, in the calculation of D it was necessary to drop the last trait, vertebral column length, after having used it to calculate the relative trait lengths.

Application of the Metrics to the Data.— From a biometrical point of view, one might like to have all comparisons independent of each other, but this is practically impossible since it would not allow many comparisons of interest to be done. Alternatively, one could compare every taxonomic unit to every other one but this would be time-consuming and expensive, since the number of possible pairwise comparisons increases as the square of the available number of taxonomic units. A representative selection of species with which to make pairwise comparisons was made as follows: for any comparison of one taxonomic group of rank R with another, we used at least one species from each subordinate taxon of rank R-1 (see Appendix, Table 2).

Choice of Taxonomic Classification.— The taxonomic relationships of the animals used in this study are illustrated in the branching diagram in Figure 1. This diagram is based on the following sources: Simpson (1945), Goin and Goin (1962), Griffiths (1963), Romer (1966) and Liem (1970).

For comparison with morphological distance estimates, ordinal values were assigned to taxonomic ranks as follows: population (0.5), subspecies (1), species (2), genus (3), subfamily (4), family (5), superfamily (6), suborder (7), order (8), cohort (9), subclass (10), and class (11).

RESULTS

Trait Lengths

This study is based on 21,936 measurements made on 184 vertebrate taxa. A summary of these measurements appears in Table 1 of the Appendix. For each taxon, the Appendix gives the number of individuals measured, the mean value of the relative trait length (x) for each of the eight traits, the mean value of the total length of the eight traits per individual, and a code number. A traditional classification for these taxa appears in Figure 1.

Empirical Evaluation of Metrics

From the measurements we estimated the morphological distances between many pairs of taxa. To choose the most appropriate metric for estimating morphological distance, we evaluated some statistical properties of each metric and compared the distance values with an independent assessment of the degrees of morphological similarity. The results of four such empirical tests appear below.

1. Metric Stability.—A factor of both theoretical and practical importance in estimating morphological distance is the stability of the estimate. A good metric will consistently give the same distance value when independent samples of the same size are used. One effect of a small sample size is to increase the variability of a distance estimate. We sought that metric which would behave most consistently with small independent samples. The test described below shows major differences in the stability of the four morphological distance metrics.

This test used eight taxa with sample sizes greater than or equal to 36. These eight taxa were grouped into four discrete pairs. We randomly divided each taxon into six subgroups of six individuals each. For the four pairs, six independent distance estimates, based on sample sizes of six for each taxon, were compared by computing the coefficient of variation for each group of estimates (Table 1).

The proportional distance metric, Δ , had the smallest coefficient of variation (14%). For Manhattan distance and the *M* statistic, the coefficients were slightly larger (16% and 20%, respectively). The coefficients of variation for Mahalanobis *D* varied widely. They ranged from 31% to 55%, with an average of 38%, suggesting that

FIG. 1. Branching diagram representing taxonomic relationships of the frogs, lizards and mammals measured for this study. This is not a phylogenetic tree, rather it is a diagrammatic representation of the taxonomic classifications proposed by Simpson (1945), Goin and Goin (1962), Griffiths (1963), Romer (1966) and Liem (1970). The abbreviations and numbers at the top of the diagram refer to taxonomic ranks: class (C, 11), subclass (sC, 10), cohort (iC, 9), order (O, 8), suborder (sO, 7), superfamily (SF, 6), family (F, 5), subfamily (sF, 4). The code numbers in parentheses refer to the taxa listed in Table 1 of the appendix.

estimates of D are unreliable for small samples.

2. Statistical Bias and Sample Size.— A different error in distance estimates results when a metric systematically underor overestimates the distance, leading to statistical bias. To evaluate this possible source of error, we compared the mean

	Coefficient of variation ¹							
Taxa compared ²	Manhattan distance (H)	Proportional distance (Δ)	<i>M</i> statistic	Mahalanobis distance (D)				
Rana cascadae a and R. cascadae c (14-16)	19	14	17	28				
R. sylvatica a and R. aurora a $(7-53)$	21	18	20	39				
R. clamitans 2 and R. utricularia $(21-57)$	14	13	14	31				
R. montezumae and Bufo compactilis (28-76)	10	10	28	55				
Mean	16	14	20	38				

TABLE 1. Variability of morphological distances estimated from small samples.

¹ Defined as one hundred times the standard deviation divided by the mean.

² Code numbers, in parentheses, for the pairs of taxa are taken from Table 1 of the Appendix.

value computed from the same small samples of each pair with the value obtained for the corresponding large sample $(n \ge n)$ 36 for each taxon). At these large sample sizes, all metrics should be accurate and unbiased. As shown in Table 2, small samples gave slightly biased estimates of the Manhattan and proportional distances. The M statistic overestimated the distances by a little more (16%). Mahalanobis distance, however, overestimated morphological distance seriously and systematically by about 120% with small sample sizes. This overestimation was as severe in intraspecific comparisons as in interfamilial ones.

3. Triangle Inequality.—The most desirable metrics are those which obey the triangle inequality (Shepard, 1980). When all pairwise comparisons are made among three species, the distances between each pair of species can be represented as the sides of a triangle. The triangle inequality states that the length of a single side (i.e., one distance) cannot be greater than the sum of the other two. Failure to meet this a priori criterion makes results difficult to interpret geometrically, and invalidates the

Metric	14-16	7–53	21-57	28–76	 Mean ratio
Manhattan distance					
Mean for small ² samples	3.31	4.02	7.05	16.55	
Large ² sample	3.16	3.67	7.19	16.41	
Ratio	1.05	1.10	0.98	1.01	1.04
Proportional distance					
Mean for small samples	4.61	5.90	7.65	14.82	
Large sample	4.44	5.31	7.74	14.44	
Ratio	1.04	1.11	0.99	1.03	1.04
M statistic					
Mean for small samples	0.96	1.26	1.84	3.24	
Large sample	0.86	1.02	1.71	2.68	
Ratio	1.12	1.24	1.08	1.21	1.16
Mahalanobis distance					
Mean for small samples	6.96	8.07	8.60	22.15	
Large sample	3.27	3.46	5.04	8.75	
Ratio	2.13	2.33	1.71	2.53	2.18

TABLE 2. Small samples and statistical bias in morphological estimates.

¹ The taxa compared are those listed in Table 1; here, they are designated by code numbers (see Table 1, or Table 1 of the Appendix for the code). ² Small (n = 6); large $(n \ge 36)$

 TABLE 3. Morphological distance and the triangle inequality.

Metric	Number of violations
Manhattan distance (H)	0
Proportional distance (Δ)	0
M statistic	76
Mahalanobis distance (D)	121
Violations common to M and D	39

technique as an accurate measure of shape differences.

For the triangle inequality test, we examined 1448 trios of taxa drawn from a wide variety of frogs, lizards and mammals. As shown in Table 3, both Manhattan distance and the proportional distance satisfied the triangle inequality in all cases. Mahalanobis distance (D) had the highest number of violations (8%), significantly greater than the M statistic had (5%).

Violations of the triangle inequality by M and D were not independent. Of the 76 triplets which produced a violation by M, 39 also had a violation by D. In contrast, the expected number of violations in common is only 6, if the M and D violations are independent. This six-fold excess of shared violations is very highly significant (P < .005) and implies that both M and D are heavily influenced by a common factor.

From the results of sections 1 and 2 above, one might expect that violations in the triangle inequality would stem solely from small sample size. However, two factors seem to contribute to violations of the triangle inequality: sample size and another factor. There are 158 triplets in which the triangle inequality is violated. Of these, 63% involved at least one taxon with a sample size less than ten. In contrast, only 31% of the 39 triplets which had a violation by both M and D involve such a small sample size. Therefore, the excess of shared triplet violations is probably caused by a factor other than small sample size. This factor is probably the variance, which enters the calculation of both M and D.

4. Correlation with Taxonomic Distance.—The fourth test examined the correlation between morphological distance and taxonomic distance, i.e., distance in the traditional taxonomic hierarchy. We assume that this latter distance represents the collective judgement of past generations of taxonomists concerning the degree to which taxa differ at the organismal level (see Discussion).

A significant correlation exists for all metrics between metric value and taxonomic distance for all vertebrates tested (Table 4). A similar picture emerges when the analysis is confined to a single class of vertebrates, such as frogs, lizards or mammals (Table 4). The highest correlations are for Manhattan distance and the proportional distance. In contrast, Mahalanobis distance generally gives the weakest correlation.

Figure 2 illustrates the approximately linear relation of both D and Δ to taxonomic distance. It also shows that the variability in Δ value increases with taxonomic rank. A comparable effect (termed heteroscedasticity) is also observed for H, M and D values.

Group	Correlation coefficient								
	Manhattan distance	Proportional distance	M statistic	Mahalanobis distance					
Frogs	0.78	0.79	0.76	0.69					
Lizards	0.81	0.87	0.71	0.68					
Mammals	0.68	0.69	0.73	0.71					
All vertebrates ¹	0.78	0.79	0.74	0.70					

TABLE 4. Correlation between morphological distance and taxonomic rank.

¹ Interclass comparisons included (see Fig. 2)

FIG. 2. Dependence of two measures of morphological distance (Δ and D) on distance in the traditional taxonomic hierarchy for frogs, lizards and mammals combined. Each number on the abscissa refers to the taxonomic rank at which morphological comparisons are made. See Figure 1 and Table 6 for the correspondence between number and rank. See Table 2 of the appendix for a list of the taxa compared at each level. The vertical bar around each mean shows the standard error.

A more quantitative analysis of the data allows us to calculate how much of the variability in morphological distance is explained by linear relationships with taxonomic distance. Total variability within each metric for all taxonomic comparisons from rank 0.5 to rank 8 was partitioned into four independent components: (1) a linear component assuming a single regression line for the combined frogs, lizards and mammals; (2) a linear component comprising the additional variability explained by using three separate regression lines for the three groups; (3) a component representing departures from linearity; and (4) an unexplained residual component. As seen in the first row of Table 5, most of the variability in H, Δ , M, and D is explained by assuming a single regression line for all vertebrates. In calculating the significance of these proportions of variability a reduction of the residual degrees of freedom was used to compensate for species used more than once in a comparison. By considering separate regression lines for frogs, lizards and mammals, as opposed to a single line, a small but significant additional component of variability is accounted for in all metrics (see Row 2). All of the metrics have small but significant nonlinear components of variability. In this connection we note the mean Δ value for subordinal comparisons (see Fig. 2, taxonomic distance 7); the 95% confidence interval for this mean is below the regression line. This example of a departure from linearity contributes to the small nonlinear component of variability estimated in Row 3 of Table 5. Next, we consider the category of variability unex-

		Percent of variance explained								
Sources of variability	Degrees of freedom	Manhattan distance	Proportional distance	M statistic	Mahalanobis D					
Taxonomic distance										
Combined regression ¹	1	56.9	57.3	52.6	48.9					
Separate regression ²	4	6.9	13.4	11.6	14.4					
Departures from linearity	18	6.4	8.9	10.1	6.8					
Unexplained sources	70	29.8	20.4	25.6	30.0					

TABLE 5. Partition of variability in metric value as a function of taxonomic distance.

¹ Variability explained by one linear regression for all vertebrates tested, excluding interclass comparison (rank 11).
² Additional variability explained by going from one to three linear regression lines for frogs, lizards and mammals (cf. Table 4).

plained by taxonomic rank (see Row 4). It is the variability about the means for each taxonomic rank, considering frogs, lizards and mammals separately. These means appear for Δ in Table 6. A high value for this component of variability indicates that the metric does not accurately measure morphological distance as predicted by the taxonomic hierarchy. Δ exhibits the lowest value for this component, as shown in Row 4 of Table 5.

Equivalence of Taxa

Since the eight traits were chosen originally by Jameson et al. (1966) for their ability to discriminate among frogs, it might be expected that morphological distance based on these traits would be greater for frog taxa than for mammal or lizard taxa of comparable rank. This expectation is not fulfilled. Rather, the slope of the line relating morphological distance (Δ) to taxonomic distance is significantly lower (P < .01) for frogs (2.0) than for lizards (3.5) or mammals (3.9).

As a general rule, in terms of metric value, lizards of a given taxonomic rank are roughly equivalent to mammalian taxa of comparable rank. In contrast, frog taxa of the same rank usually differ slightly less in body proportions than comparable lizard or mammal taxa. The greatest discrepancies occur at the subfamily and family levels (see Table 6), where there is a strong tendency for mammals to differ more in body shape than do frogs or lizards. The most striking cases of equivalence of taxa occur at the subspecies and species levels. Species within a genus, for instance, generally differ in proportional distance to about the same extent in all three major groups.⁶

DISCUSSION

The above results help us to choose an efficient and economical way to study evolution at the organismal level. They focus attention on the utility of simple metrics and small numbers of linear traits. We have examined four metrics, each with different attractive features. The Manhattan distance, H, is the simplest metric examined. However, because it is unweighted, it inadvertently emphasizes changes in large traits. The proportional distance, Δ , attempts to weight smaller traits more equitably but has the disadvantage of being more affected by the error of measuring small traits. Both H and Δ are simple to compute, requiring only a table of mean traits (Appendix, Table 1) for calculation. They ignore the variability of traits within a taxon.

By contrast, the M statistic and Mahalanobis distance (D) use the intrataxon variability of traits in their computation. Mahalanobis distance satisfies demands for corrections for correlations between traits

⁶ Care must be taken in using the porportional distance as the basis for taxonomic judgements. Although the current work indicates that taxonomic categories of comparable rank in different groups may be roughly equivalent, there is nonetheless a considerable amount of overlap among the Δ values found at contiguous taxonomic levels within a group (see Fig. 2 and Table 6).

but M, being similar to the Coefficient of Racial Likeness (Pearson, 1926), does not estimate intertrait correlations.

Reliability of Metrics

Of the four types of metrics examined here, Manhattan distance and proportional distance proved the most reliable. Both always satisfied a minimum requirement of reliability, the triangle inequality (Shepard, 1980), and produced consistent, unbiased estimates of morphological distance, even with small samples.

The Manhattan distance, H, is constrained to obey the triangle inequality by its algebraic definition (seen clearly by geometric analogy). The proportional distance, Δ , is not so constrained. Conditions were observed in preliminary calculations in which Δ did violate the triangle inequality. These violations occurred whenever a trait length was zero for one taxon. When a trait length was zero, it inflated the contribution of that particular trait to the overall distance for two of the pairs involved in the triangle inequality test. This often led to a violation. Thus, it is important to use traits that do not vanish in any of the taxa to be compared. This consideration led us to exclude the eyetympanum measurement used by Cherry et al. (1978), because it could not be made in all taxa considered here.

Both M and D violated the triangle inequality often enough to question their routine use as metrics. Many of their violations involved comparisons with small sample sizes but another factor was implicated. This other factor is likely to be the variances which are shared by the calculating of both M and D. Furthermore, it was shown that small sample sizes led to systematic overestimates of M and D.

Mahalanobis D was widely recommended to us as a measure of organismal difference but it did not perform as well as the other metrics in this study. There are important theoretical reasons for this result, discussed elsewhere by Kunkel et al. (1980) and Rao (1980), concerning the mathematical assumptions on which the metric is based. Briefly, the calculation of Mahalanobis D requires the accurate estimation of covariance matrices, and these covariance matrices must be homogeneous among the species compared. These requirements can generally be met only when large samples are available and closely related species are compared. Many comparisons made in the current study necessarily involve distantly related species represented by small samples. In such cases the morphological distance estimates obtained from Mahalanobis D would be expected to be unstable and unreliable. We observed this to be the case. A reevaluation of the role of Mahalanobis D in systematic and evolutionary biology may thus be in order. As a reviewer commented, "It is no doubt true that simple distance measures are often the best and should be used more frequently than they are."

Trait Selection and Trait Number

Taxonomists advocate the use of large numbers of traits in order to discriminate among closely related taxa (Mayr, 1969; Sneath and Sokal, 1973). Our goal, however, is to produce a morphological distance scale applicable to higher as well as lower taxonomic categories. We have found that a small number of quantitative traits is sufficient for this purpose, if they represent all major parts of the body. Our original study of frogs, humans and chimpanzees was based on nine such traits (Cherry et al., 1978). Here we have eliminated one of them (see above) and further studies indicate that as few as five quantitative traits can be used to estimate morphological distance accurately (Kunkel et al., unpubl.), thereby raising the hope of applying this approach to incomplete fossil specimens.

Trait Correlations

Our study suggests that, in research with small samples and few traits from all major parts of the body, intertrait correlations can be ignored. This suggestion is in contrast to prevailing views, which are critical of metrics that do not correct for correlations between traits (e.g., Atchley, 1980). The critics have been concerned with demonstrating significant differences between closely related taxa. Although a significance test requires that correlations be corrected for, the need for a correction disappears when such a test is not an objective.

Covariance correction is essential to remove the inordinate weighting of a particular part of the body when many traits from that part are measured. Since a crucial element in our approach is the use of only a few traits from all parts of the body, such corrections are of limited value. These few traits are sufficient to capture the shape difference between taxa. It is notable, also, that the correlations of traits differ substantially among higher taxonomic categories (Kunkel et al., 1980), so that conventional correction for correlations lacks theoretical justification (Rao, 1980).

Practical Implications

Important practical results are realized if one accepts that correcting for intertrait correlations is inappropriate for comparisons of shape. The best linear and unbiased metrics in our analysis, Δ and H, require only trait means for each taxon. These are extremely simple to calculate and do not necessitate extensive sampling. A sample size greater than five produces only modest gains in accuracy for each equivalent effort of data collection. Variance and covariances, however, require large sample sizes for precise estimation.

When means are a sufficient statistic for calculating a distance metric (i.e., H and Δ), benefits other than small sample size requirements accrue. To calculate D one must know the means, sample size and covariance matrix for each taxon. The sheer bulk of the data precludes their publication, even for modest lists of taxa. If means of a small number of common traits are adequate to compare shape, a comprehensive treatment of shape change becomes realizable and publication of the data on which it is based becomes feasible. Accordingly, Table 1 of our appendix, which occupies four pages, contains all the data needed to calculate H and Δ for every possible pairwise comparison of 184 taxa.

By contrast, the information needed to calculate M and D as well would require 14 additional pages. In addition to enabling workers to verify the assertions of a study without enormous expenditures of computer and human time, this approach will renew interest in trait lengths published in current as well as older works.

Relation to Taxonomic Distance

Our examination of the relation between morphological distance and distance in the taxonomic hierarchy is based on the assumption that the chief role of taxonomy in past decades was to summarize information concerning the degree of phenotypic similarity among species. We are aware that taxonomists also strive to incorporate into classifications information about the branching order and times of divergence of the lineages leading to modern species. There is much debate about the relative importance that degree of phenotypic difference and time of divergence should have in taxonomic classifications (Mayr, 1974; Mickevich, 1978). However, it is widely agreed that until the last decade, most classifications were mainly phenetic. For our study it was important to use such classifications since taxonomic distance would then be predominantly a measure of phenotypic difference.

Cain and Harrison (1958), in an early discussion of some of the problems associated with doing this type of study, emphasized the need to separate the estimation of similarity from phylogenetic considerations. The objective of evaluating our metrics and ultimately examining the relation between morphological change and time⁷ could not have been achieved if we had simply examined the correlation

⁷ Preliminary tests indicate that morphological distance is not related in a simple way to time of divergence, except at very low taxonomic levels. We therefore stress that one must be cautious about using these distances for the construction of evolutionary trees or quantitative analysis of rates of evolution (Cherry, 1980).

between metric value and taxonomic distance in a phylogenetic classification. Had we used phylogenetic classifications, distance in the taxonomic hierarchy would have been more seriously confounded with time of divergence.

Overall Difference at the Organismal Level

The correspondence that we observed between morphological distance and the classical taxonomic hierarchy is paralleled by the results obtained in Oxnard's (1979) study of body proportions in 36 taxa of primates. As he points out, classical taxonomists did not usually consider body proportions when ranking taxa. Rather, such judgements were made intuitively, based on a thorough knowledge of the detailed anatomy of particular organs and functional complexes. Since body shape differences correlate with these intuitive estimates, anatomical changes may frequently entail changes in body proportions and vice versa. Thus, estimates of body shape difference may provide an approximation of overall difference at the organismal level.

Body shape comparison will not always be a reliable guide to overall degree of difference. This is most evident from our unpublished studies of dog breeds. The proportional distance between the German shepherd and bulldog ($\Delta = 16$), for instance, is comparable to that between taxonomic subfamilies although these two breeds belong to the same species. The proportional distance value correctly shows that they are very different in body shape. This is the result of artificial selection on body shape. In internal anatomy, physiology and behavior, these breeds have presumably not diverged as much as have vertebrates in different subfamilies. This is a case in which body shape and total organismal biology have not changed in unison. In general, however, as noted in the previous paragraph, the two types of change, i.e., change in body shape and overall organismal biology, appear to be highly correlated in non-domesticated species. Consequently, body shape metrics may usually reflect overall degree of difference at the organismal level and thus permit the testing of hypotheses about evolutionary mechanisms.

Rates of Morphological Evolution and Speciation

The present work sets the stage for using H or Δ as a measure of morphological distance in research on evolution at the organismal level for a wide range of land vertebrates. In the future, we intend to study the relation between morphological distance and time of divergence.⁸ To illustrate the potential value of such studies, we present below the result of using one simple method to obtain rates of morphological evolution for frogs, lizards and mammals.

Consider first the mean morphological distance (Δ) among species within a genus (see Table 6). The Δ values are rather similar for frogs, lizards and mammals, viz. 6.7, 6.7 and 5.9, respectively. Next, consider the estimates of mean generic age (t)published by Bush et al. (1977) on the basis of fossil evidence, viz. 26.4 million years for frogs, 20.1 million years for lizards and 6.5 million years for mammals. Hence, the mean rate of morphological evolution (Δ / t) within extant genera appears higher for mammals (0.88) than for lizards (0.36) or frogs (0.25). This quantitative approach confirms the qualitative impression of many biologists that the tempo of organismal evolution in mammals has been higher than in lizards or frogs.

In Figure 3 the above estimates of mean rates of morphological evolution are plotted against the mean rates of speciation estimated for extant genera of frogs, lizards and mammals by Bush et al. (1977). A straight line with a positive slope can be drawn through the three points and this is consistent with the view that speciation can accelerate morphological evolution (Mayr, 1963; Wilson et al., 1977b; Gould, 1977; Stanley, 1979). Further, from the

⁸ See footnote number 2.

TABLE 6. Morphological distance and the equivalence of taxa.

Tauan amia nank	Mea	Faujualant		
of comparison	Frogs	Lizards1	Mammals	taxa ²
0.5, populations	2.9	5.0		
1, subspecies	4.9	4.8	5.5	FLM
2, species	6.7	6.7	5.9	FLM
3, genera	9.1	8.2	12.8	FL
4, subfamilies	10.8	13.3	25.6	
5, families	10.8	14.8	25.5	
6, superfamilies	15.3	22.0	22.1	LM
7, suborders	17.3		22.7	
8, orders		30.6	39.5	

¹ The term lizards, as used here, includes both the order Rhyn-The term nizatis, as used net, includes both the order Adyn-chocephalia and conventional lizards (order Squamata). 2 F = frogs, L = lizards, M = mammals. Equivalent taxa do not differ in Δ value at the .05 level, using the Students t test.

line's intercept on the ordinate, one could infer that morphological evolution usually takes place slowly in the absence of speciation.

The result shown in Figure 3, and based on 17 genera, might seem to contrast with that obtained in a recent study of two fish genera. According to Douglas and Avise (1982), the mean interspecific morphological distance is equivalent for *Notropis*, a speciose genus, and Lepomis, a speciespoor genus. Although these two genera differ by a factor of two as regards net speciation rate (R), it is important to recognize that the true rate of speciation (S)is defined by equation 8,

$$S = R + E, \tag{8}$$

where E is the extinction rate (Stanley, 1975; Bush et al., 1977). Since no estimate is available for E in the fish case, the possibility exists that Notropis and Lepomis do not differ in speciation rate and, therefore, do not provide an opportunity to test the hypothesis of a relationship between morphological change and speciation.

Our study illustrates the potential value of using an approach that allows morphological evolution to be compared in representatives of different taxonomic Classes, like mammals and frogs. By comparing morphological evolution between Classes, which differ greatly in biological properties, one raises the probability of encoun-

FIG. 3. Dependence of morphological evolution on speciation for three groups of extant genera, namely frogs, lizards and mammals. The ordinate gives, for each group of genera, the mean interspecific Δ value for species within a genus divided by the mean generic age in millions of years. The mean Δ values are from Table 6 and the mean generic ages are from Bush et al. (1977). The abscissa gives, for each group of genera, the mean number of speciation events per million years within a lineage (from Bush et al., 1977). The point nearest the origin is for frogs, the next point is for lizards and the point farthest from the origin is for mammals.

tering large differences in rates of evolution. Mammals differ from frogs by about five-fold as regards the true rate of speciation (Fig. 3). Such large differences in rate may be a prerequisite for adequate testing of hypotheses concerning the relationship of morphological evolution to speciation.

We do not suggest that the results shown in Figure 3 suffice to establish the relationship implied by the straight line. Proof for such a relationship will require more evidence and a deeper analysis⁹ of the dependence of Δ on t. Our aim in this final section of the paper has merely been to point out briefly how the quantitative study

⁹ See footnote number⁷.

of morphological evolution may provide a new way of testing theories about the mechanism of evolution.

SUMMARY

Quantitative methods of comparing body shapes were applied to 184 taxa of frogs, lizards and mammals. The shape comparisons were based on measurement of eight linear traits from all major parts of the body.

Four metrics were tested for their usefulness in quantifying overall shape difference. The metrics vary in the amount of information required for their calculation. Two of them (H and Δ) require only mean trait lengths, the third (M) requires means and variances of trait lengths and the fourth (D) requires means, variances and covariances of trait lengths to be calculated.

The most stable and unbiased estimates of distance were given by the simplest metrics, H and Δ . In addition, these two metrics satisfied the triangle inequality, whereas M and D frequently violated this relationship. All four metrics proved to be highly correlated with distance in the classical taxonomic hierarchy. Mahalanobis D, the most widely recommended multivariate distance metric, was the least adequate in these empirical tests. The superiority of H and Δ as distance metrics arises because they are not subject to the errors introduced in estimating variances and covariances.

According to the Δ metric, species within frog genera differ in body proportions to about the same extent as do species within genera of lizards or mammals. Analogous findings were made at the subspecies level. At other levels of the taxonomic hierarchy, however, equivalence of frog, lizard and mammal taxa with regard to body shape difference was not observed; rather, frogs tend to be more alike in body shape than is the case for lizards or mammals at a given level in the taxonomic hierarchy.

The strong correlation between metric value and distance in the taxonomic hi-

erarchy could imply that body shape difference is an indicator of degree of overall morphological difference. Oxnard (1979) reached a similar conclusion from an analogous study of 36 primate taxa.

From the average value of Δ for interspecific comparisons within genera as well as mean generic age (t) for each group, we calculated that the mean rate of morphological divergence (Δ/t) has been higher for mammalian genera than for genera of lizards or frogs. These rates appear to be linearly related to published values for the average rates of speciation within groups of extant genera. This finding is consistent with the view that morphological evolution is concentrated in speciation events.

ACKNOWLEDGMENTS

We thank S. Anderson, H. W. Greene, D. Gunner, W. R. Heyer, A. G. Kluge, H. McHenry, L. Julian, J. L. Patton, H. Shapiro, R. G. Stebbins, D. B. Wake, E. E. Williams and R. G. Zweifel, who made specimens or data available for this study. We also thank R. Cann, S. Carr and K. Helm-Bychowski for comments on this manuscript, as well as R. Lewontin, Museum of Comparative Zoology at Harvard University and Herpetology Department, American Museum of Natural History for providing space and facilities to A. C. W. and S. M. C. This work was supported by NSF and NIH grants and a Guggenheim Fellowship awarded to A. C. W., funds from the Computer Center, University of Massachusetts, awarded to J. G. K., funding administered by the Genetics Joint Doctoral Program (San Diego State University and University of California Berkeley) awarded to L.M.C., and an NSF grant awarded to E. E. Williams.

LITERATURE CITED

- ATCHLEY, W. R. 1980. M-statistics and morphometric divergence. Science 208:1059-1060.
- BENGTSSON, B. O. 1980. Rates of karyotypic evolution in placental mammals. Hereditas 92:37– 48.
- BLACKITH, R. E., AND R. A. REYMENT. 1971. Multivariate Morphometrics. Academic Press, London.

- BOOKSTEIN, F. L. 1978. The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics #24. Springer-Verlag, N.Y.
- BUSH, G. L., S. M. CASE, A. C. WILSON, AND J. L. PATTON. 1977. Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA 74:3942–3946.
- CAIN, A. J., AND G. A. HARRISON. 1958. An analysis of the taxonomist's judgement of affinity. Proc. Zool. Soc. London 131:85–98.
- CHERRY, L. M. 1980. Chromosomal and morphological evolution in mammals and amphibians. Unpubl. Ph.D. dissertation. Univ. California, Berkeley.
- CHERRY, L. M., S. M. CASE, J. G. KUNKEL, AND A. C. WILSON. 1979. Comparisons of frogs, humans and chimpanzees. Science 204:435.
- CHERRY, L. M., S. M. CASE, AND A. C. WILSON. 1978. Frog perspective on the morphological difference between humans and chimpanzees. Science 200:209–211.
- DOBZHANSKY, T. 1970. Genetics of the Evolutionary Process. Columbia Univ. Press, N.Y.
- DOUGLAS, M. E., AND J. C. AVISE. 1982. Speciation rates and morphological divergence in fishes. Tests of gradual versus rectangular modes of evolutionary change. Evolution 36:224–232.
- FARRIS, J. S. 1972. Estimating phylogenetic trees from distance matrices. Amer. Natur. 106:645– 668.
- FINDLEY, J. S. 1979. Comparisons of frogs, humans and chimpanzees. Science 204:434-435.
- GOIN, C. J., AND O. B. GOIN. 1962. An Introduction to Herpetology. W. H. Freeman, San Francisco.
- GOULD, S. J. 1977. Ontogeny and Phylogeny. Harvard Univ. Press, Cambridge.
- GRIFFITHS, I. 1963. The phylogeny of the Salientia. Biol. Rev. 38:241-292.
- HENNIG, W. 1966. Phylogenetic Systematics. Univ. Illinois Press, Urbana.
- HOWELLS, W. W. 1973. Cranial variation in man. A study by multivariate analysis. Peabody Mus. Pap. 67:1–259.
- JAMESON, D. L., J. R. MACKEY, AND R. C. Richmond. 1966. The systematics of the Pacific tree frogs, *Hyla regilla*. Proc. Calif. Acad. Sci. 33: 551-620.
- JAMESON, D. L., AND R. C. RICHMOND. 1971. Parallelism and convergence in the evolution of size and shape in Holarctic Hyla. Evolution 25: 497-508.
- KUNKEL, J. G., L. M. CHERRY, S. M. CASE, AND A. C. WILSON. 1980. M-statistics and morphometric divergence. Science 208:1060–1061.
- LEVIN, D. A., AND A. C. WILSON. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc. Natl. Acad. Sci. USA 73: 2086–2090.
- LEWONTIN, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia Univ. Press, N.Y.

- LIEM, S. S. 1970. The morphology, systematics and evolution of the Old World tree frogs (Rhacophoridae and Hyperoliidae). Fieldiana Zool. 57: 1–145.
- MAHALANOBIS, P. C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2:49–55.
- MARUYAMA, T., AND H. T. IMAI. 1981. Evolutionary rate of the mammalian karyotype. J. Theoret. Biol. 90:111-122.
- MATHER, K., AND J. L. JINKS. 1971. Biometrical Genetics. Cornell Univ. Press, Ithaca.
- MAYR, E. 1963. Animal Species and Evolution. Harvard Univ. Press, Cambridge.
- ——. 1969. Principles of Systematic Zoology. McGraw-Hill, N.Y.
- ——. 1974. Cladistic analysis or cladistic classification? Z. Zool. Syst. Evol.-forsch. 12:94–128.
- MICKEVICH, M. F. 1978. Taxonomic congruence. Syst. Zool. 27:143–158.
- NEI, M. 1975. Molecular Population Genetics and Evolution. North-Holland, Amsterdam.
- OXNARD, C. E. 1973. Functional inferences from morphometrics: problems posed by uniqueness and diversity among the primates. Syst. Zool. 22: 409–424.
- ——. 1979. The morphological-behavioral interface in extant primates: some implications for systematics and evolution, p. 209–227. In M. E. Morbeck, H. Preuschoft, and N. Gomberg (eds.), Environment, Behavior and Morphology. Gustav Fischer, N.Y.
- PEARSON, K. 1926. On the coefficient of racial likeness. Biometrika 18:103–117.
- RAO, C. R. 1980. Diversity and dissimilarity coefficients: a unified approach. Tech. Report No. 80-10. Inst. Stat. Applications, Dept. Math. Stat., Univ. Pittsburgh.
- ROMER, A. S. 1966. Vertebrate Paleontology, 3rd ed. Univ. of Chicago Press, Chicago.
- SHEPARD, R. N. 1980. Multidimensional scaling, tree-fitting, and clustering. Science 210:390–398.
- SIMPSON, G. G. 1945. The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85:1–350.
- SNEATH, P. H. A., AND R. R. SOKAL. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.
- STANLEY, S. M. 1975. A theory of evolution above the species level. Proc. Natl. Acad. Sci. USA 72: 646–650.
- ------. 1979. Macroevolution: Pattern and Process. W. H. Freeman, San Francisco.
- WILSON, A. C., G. L. BUSH, S. M. CASE, AND M.-C. KING. 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl. Acad. Sci. USA 72:5061–5065.
- WILSON, A. C., S. S. CARLSON, AND T. J. WHITE. 1977a. Biochemical evolution. Ann. Rev. Biochem. 46:573–639.
- WILSON, A. C., V. M. SARICH, AND L. R. MAXSON. 1974. The importance of gene rearrangement in evolution: evidence from studies on rates of chro-

mosome, protein and anatomical evolution. Proc. Natl. Acad. Sci. USA 71:3028-3030.

WILSON, A. C., T. J. WHITE, S. S. CARLSON, AND L. M. CHERRY. 1977b. Molecular evolution and cytogenetic evolution, p. 375-393. In R. S. Sparkes, D. E. Comings, and C. F. Fox (eds.), Molecular Human Cytogenetics: ICN-UCLA Symposia on Molecular and Cellular Biology. Academic Press, N.Y.

Corresponding Editor: S. J. Gould

Table 1. Mean trait lengths for 184 taxa.

a TAXONOMIC GROUP and CODE NUMBER	SAMPLE SIZE		М	EAN REI	LATIVE	TRAIT	LENGTH	s ^b , (x _i)	MEAN SUM OF TRAIT
	(n)	HW	HL.	E-N	N-L	SL	FA	TL	VL.	LENGTHSC
TAXONOMIC GROUP and CODE NUMBER CLASS AMPHIBIA Pipidae 1 Xenopus laevis Ranidae 2 Dicroglossus occipitalis 3 Hylarana temporalis 4 Rana areolata 1 5 R. areolata 2 6 R. areolata 3 7 R. aurora 1a 8 R. aurora 1a 9 R. aurora 1c 10 R. aurora 2 11 R. berlandieri 12 R. blairi 13 R. boylii 14 R. cascadae a 15 K. cascadae a 15 K. cascadae d 18 K. cascadae d 22 R. dunni 23 R. grylio 24 R. japonica 25 R. johni 26 R. montezumae 29 R. muscosa 30 R. onca 31 R. palmipes 32 R. pretiosa a 35 R. pretiosa d	SAMPLE SIZE (n) 8 20 10 19 20 16 50 12 16 50 12 16 21 21 26 17 16 21 21 26 17 16 49 29 27 11 14 22 21 14 35 29 20 38 16 50 21 21 21 21 20 10 19 20 20 10 19 20 20 10 19 20 20 10 19 20 20 20 20 20 20 20 20 20 20 20 20 20	HW 1153 1397 1258 1563 1314 1514 1257 1261 1257 1261 1257 1261 1257 1261 1257 1261 1297 1213 1430 1230 1237 1245 1321 1151 1159 1237 1247 1257 1247 1257 1247 1257 15	M HL 813 1273 1284 1324 1324 1058 1078 1058 1078 1058 1058 1058 1058 1058 1058 1058 105	EAN REI E-N 184 291 323 334 274 252 259 259 259 259 259 259 259 259 259	LATIVE 241 330 248 289 302 290 304 283 309 291 277 286 300 292 2326 300 292 277 286 300 292 2326 270 305 311 270 246 263 325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3325 288 289 3305 284 285 286 300 292 277 286 300 292 277 286 300 292 277 286 300 292 277 286 277 286 300 292 277 286 300 292 277 286 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 277 286 270 270 270 270 270 270 270 270	TRAIT SL 1767 1732 2028 1724 1845 1709 1957 1963 1998 2015 2044 2130 2067 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2002 1957 1953 2054 2000 1855 1867 1767 1854 2000 1854 2004 2031 1809 1	LENGTH FA 762 735 779 719 718 752 778 759 752 718 759 752 7881 780 781 737 780 781 737 737 637 732 718 799 799 740 752 718 799 799 740 752 742 742 780	s , (x ₁ TL 1837 1889 1849 1797 1845 1885 1997 2063 2015 1997 2063 2076 1978 1993 1905 2012 1981 1999 1977 1939 1977 1939 1977 1939 1977 1939 194 2034 2029 2134 1904 1994 2030 2060 1965 1891 2014 2036 1995 2020) VL 2352 2231 2249 2603 2290 2331 2306 2331 2306 2331 2303 2425 2404 2366 2377 2431 2399 2407 2388 2482 2499 2407 2388 2482 2434 2399 2407 2388 2482 2434 2399 2497 2300 2285 2495	MEAN SUM OF TRAIT LENGTHS 214 159 201 241 214 216 180 225 166 206 183 150 147 161 165 156 166 238 181 150 213 206 148 150 213 206 148 151 150 213 206 148 151 150 213 206 148 151 150 213 206 148 150 213 206 148 150 213 206 148 150 213 206 213 213 206 213 206 213 215 215 215 215 216 206 215 216 206 215 216 206 216 216 206 215 216 216 216 216 216 216 216 216 216 216
<pre>33 R. pipiens 34 R. pretiosa a 35 R. pretiosa b 36 R. pretiosa d 37 R. pretiosa f 39 R. pretiosa f 39 R. pretiosa f 40 R. pretiosa i 42 R. pretiosa i 42 R. pretiosa i 43 R. pretiosa k 44 R. pretiosa k 45 R. pretiosa n 47 R. pretiosa n 47 R. pretiosa n 47 R. pretiosa p 49 K. pretiosa s 51 R. pustulosa 52 R. septentrionalis 53 R. sylvatica a 54 R. sylvatica b 55 R. tarahumaræ 56 R. temporaria</pre>	20 38 16 17 11 25 10 10 10 10 10 10 10 10 10 10 10 10 10	1159 1247 1247 1247 1209 1205 1213 1244 1209 1238 1250 1238 1250 1250 1250 1190 1198 1226 1339 1226 1339 1221 1276 1305 1160	1054 1056 1092 1056 1041 1062 1054 1054 1074 1074 1074 1074 1038 1085 1056 1088 1085 1086 1088 1080 1227 1163 1093 1161 978	237 221 234 249 250 233 229 223 244 226 233 226 233 226 239 252 252 252 252 252 252 242 255 221 220 209 267 193	300 303 281 309 303 2874 286 299 301 297 292 284 301 303 304 303 304 333 304 259 297 336 277	2031 1892 1904 1977 1868 1905 1865 1873 1865 1873 1853 1878 1873 1878 1879 1903 1866 1746 1834 1894 1864 1864 1834 1864 1834 1864 1834	727 742 780 802 754 7754 786 785 738 735 717 793 752 768 705 768 705 763 746 794	2068 2036 1995 2029 2007 2044 2005 2029 2064 2048 2016 1963 2079 2014 1969 2079 2014 1920 1827 2045 1827 2045 1827 2051 1976 1896 2062	2423 2512 2490 2555 2498 2563 2566 2526 2526 2534 2526 2534 2594 2594 2594 2538 2294 2538 2294 2538 2294 2538 2294 2538 2294 2538 2294 2555 2642 2617 2350 2642	185 165 178 135 159 151 180 138 164 154 168 172 138 168 172 138 165 192 141 126 112 176 168

 a The classification parallels that in Figure 1.
 b The abbreviations for traits are: HW (head width), HL (head length), E-N (eye to nostril), N-L (nostril to lip), SL (shank length), FA (forearm), TL (toe length), VL (length of the vertebral column excluding the tail). Kelative trait lengths (see equation 1) are given in parts per ten thousand thousand.

p Σa i=1 c Given in millimeters. This corresponds to the term from equation 1.

Table 1. Mean trait lengths for 184 taxa.

TAXONOMIC GROUP ^a and CODE NUMBER	SAMPLE SIZE		M	EAN REI	LATIVE	TRAIT	LENGTH	s ^b , (x _i)	MEAN SUM OF TRAIT
	(n)	HW	HL	E-N	N-L	SL	FA	TL.	VL	LENGTHS
57 R. utricularia	39	1132	1139	257	292	2023	722	2113	2322	170
50 R virgatines	20	1212	1272	200	205	1712	702	2020	2430	120
60 R warschewitschij	11	1145	1275	204	235	2000	705	1807	2922	104
Hyperoliidae		(117)	1390	122	ردے	2000	190	1007	2292	121
61 Afrixalus fornasinsi	19	1235	1076	402	232	1849	725	1684	2797	79
62 Hyperolius ahli	19	1319	1094	349	241	1983	725	1649	2640	84
63 H.puncticulatus	20	1290	1033	344	238	1820	830	1526	2920	82
64 H. viridiflavus	15	1142	917	305	237	1980	801	1697	2921	79
65 Leptopeltis christyi	19	1470	1239	323	288	1791	756	1642	2491	104
Rhacophoridae									-	
66 Chiromantis petersi	19	1214	1090	336	234	2038	728	1542	2818	135
67 C. rufescens	16	1177	1149	395	233	1971	712	1550	2813	125
68 C. xerampelina	14	1234	1059	317	241	1883	785	1509	2972	158
69 Rhacophorus gondoti	13	1368	1164	240	294	2083	764	1847	2240	220
70 R. leucomystax	16	1270	1271	421	216	2137	729	1598	2360	159
Bufonidae		4555			0.51					
/ Buio alvarius	11	1557	1195	280	354	1463	897	1500	2753	226
72 B. americanus	17	1529	1090	245	278	1521	1013	1655	2669	151
73 B. Doreas	19	1411	1034	235	301	1401	929	1842	2786	211
75 B company	20	1529	1092	229	298	1431	930	1610	2739	218
76 B compactilis	19	1043	1051	288	303	1400	807	1610	2007	179
77 B debilis	3/1	1472	1099	200	200	1572	801	1502	2007	133
78 B marinus	15	1440	1122	272	290	1527	030	1502	29/1	220
79 B. melanostictus	20	1526	1145	260	306	1520	1021	1545	2677	208
80 B. regularis	19	1460	1031	262	315	1547	848	1555	2083	200
81 B. viridis	17	1423	1015	244	297	1474	915	1747	2886	180
82 B. woodhousei	16	1500	1027	243	295	1611	864	1727	2732	190
Hylinae					-,,,					.,,,,
83 Hyla crucifer	20	1328	1292	340	284	1868	884	1432	2573	65
84 H. chrysoscelis	15	1400	1211	303	307	1778	899	1470	2631	103
85 H. eximia	19	1261	1170	291	296	1799	861	1591	2731	78
86 H. femoralis	20	1357	1297	327	301	1866	866	1405	2582	76
87 H. regilla 1	20	1332	1196	322	309	1817	888	1526	2610	91
88 H. regilla 2	20	1344	1205	308	311	1829	881	1520	2600	101
89 H. regilla 3	20	1288	1207	298	310	1806	903	1568	2619	84
90 H. regilla 4	20	1212	1138	285	295	1839	915	1696	2620	98
91 H. Squirella	20	1301	1234	315	282	1921	831	1389	2726	78
92 Fill ynonyas venutosa	24	1260	1157	320	245	1957	(()	1594	2/52	172
Phyllomedusinae	23	1203	1157	318	291	1590	124	1082	2807	125
94 Agalvehnis callidryas	Q	1280	1155	365	210	2085	027	1220	2628	150
95 Pachymedusa dachnicolor	16	1327	1151	312	262	1624	030	1/1/1	2030	172
96 Phyllomedusa tarsius	12	1331	1113	308	223	1875	1128	1225	2707	206
CLASS DEDITITA		.55.		500	225	1015	1120	1225	2171	200
Sphenodontidae										
97 Sphenodon punctatus	2	1201	1608	221	227	856	721	1164	2702	1110
Sceloporinae	2	1201	1090	221	231	050	121	1104	3193	448
98 Callisaurus draconoides	12	785	1000	312	116	1252	802	10.97	25/16	120
99 Cophosaurus texanus	12	831	1111	322	130	1222	706	1053	2516	139
100 Holbrookia maculata	12	881	1155	312	130	1220	820	1770	3711	110
101 Petrosaurus thalassinus	12	977	1397	397	132	1181	826	1453	3636	223
102 Phrynosoma m'calli	6	1013	1166	291	254	1295	892	1287	3802	129
103 P. platyrhinos	12	1015	1159	300	209	1196	862	1386	3873	148
104 Sator angustus	12	862	1391	409	113	1237	799	1606	3584	153
105 Sceloporus graciosus	6	938	1308	376	128	1145	730	1546	3828	99
106 S. jarrovi	6	1096	1358	352	121	1098	793	1380	3802	155
										-

 a The classification parallels that in Figure 1.
 b The abbreviations for traits are: HW (head width), HL (head length), E-N (eye to nostril), N-L (nostril to lip), SL (shank length), FA (forearm), TL (toe length), VL (length of the vertebral column excluding the tail). Relative trait lengths (see equation 1) are given in parts per ten thousand thousand.

^c Given in millimeters. This corresponds to the term $\sum_{i=1}^{p} a_{ij}$ from equation 1.

Table 1. Mean trait lengths for 184 taxa.

a TAXONOMIC GROUP and CODE NUMBER	SAMPLE SIZE		Mi	EAN REI	LATIVE	TRAIT	LENGTH	s ^b , (x _i)		MEAN SUM OF TRAIT
	(n)	HW	HL	E-N	N-L	SL	FA	TL	VL	LENGTHS
107 S. magister 108 S. occidentalis 1 109 S. occidentalis 2 110 Streptosaurus mearnsi 111 Uma inornata 112 Urosaurus graciosus 113 U. microscutatus 114 U. ornatus 115 Uta palmeri 116 U. stansburiana	12 6 12 12 12 6 6 4 12	1023 983 983 943 887 866 960 912 891 934	1294 1287 1284 1344 1215 1369 1406 1284 1360 1337	356 333 379 417 338 410 371 404 383 381	129 104 130 96 139 125 143 114 102 123	1166 1243 1184 1277 1314 1108 1201 1159 1273 1245	837 777 781 892 826 734 810 769 829 748	1456 1605 1527 1440 1499 1595 1494 1459 1553 1615	3739 3668 3733 3592 3782 3791 3615 3898 3609 3617	188 158 122 153 169 93 80 107 121 90
117 Basiliscus plumbifrons 118 B. vittatus 119 Corythophanes cristatus 120 C. percarinatus 121 Laemanctus serratus Iguaninae	1 12 1 2 1	754 727 919 879 864	1391 1284 1326 1272 1382	385 396 341 364 363	131 115 160 145 143	1642 1467 1458 1371 1482	751 669 897 758 816	2131 2110 1980 1780 1797	2815 3232 2921 3430 3153	298 242 182 159 231
122 Dipsosaurus dorsalis 123 Iguana iguana Crotaphytinae	6 6	808 651	1162 1290	334 412	115 117	1257 1237	692 876	1813 1870	3817 3547	219 359
124 Crotophytus collaris 125 Gambelia silus a 126 G. silus b 127 G. wislizenii a 128 G. wislizenii b 129 G. wislizenii c 130 G. wislizenii d Troniduminen	16 24 10 19 4 6 4	1016 999 969 908 879 890 966	1406 1284 1281 1320 1342 1344 1332	374 355 357 397 425 428 357	141 129 120 116 121 116 133	1330 1235 1311 1196 1219 1243 1226	721 718 731 692 663 706 672	1714 1641 1696 1659 1887 1755 1603	3299 3638 3534 3712 3465 3518 3711	198 210 199 222 228 212 203
131 Tropidurus peruviensis 132 T. torquatus Anolinae	6 6	891 912	1291 1405	351 414	131 120	1366 1264	753 776	1733 1596	3486 3512	160 145
 133 Anolis carolinensis 134 A. cybotes 1 135 A. cybotes a 136 A. cybotes b 137 A. evermanni 138 A. grahami 139 A. krugi 140 A. marcanoi 141 A. pulchellus 142 A. sagrei a 143 A. sagrei b 144 A. shrevei Aramidae 	6 11 14 20 6 15 23 18 21 6 17 17	931 1056 1014 951 822 938 827 957 796 841 836 961	1757 1485 1478 1552 1505 1446 1596 1502 1354 1448	627 431 440 563 565 517 450 577 526 399 404	145 133 138 113 93 102 115 131 95 100 98 138	1114 1178 1259 1254 1251 1179 1245 1271 1163 1237 1207 1174	721 761 784 761 812 715 645 829 586 752 679 731	1342 1702 1688 1554 1579 1768 1685 1659 1596 1761 1645	3363 3254 3167 3274 3353 3417 3438 3216 3527 3446 3667 3499	114 110 130 114 121 119 94 115 87 123 93 93
145 Agama stellio Chamaeleonidae	6	1172	1523	314	130	1267	843	1520	3231	170
146 Chamaeleo dilepis Gekkonidae	6	919	1502	204	117	1134	1156	706	4261	191
Scincidae	6	808	1532 1 <u>1</u> 116	407 30/J	95 116	712	840 5/12	879 110/	4266	107
Gerrhosaurus flavigularis	6	753	1310	390	85	843	528	1354	4736	129
Lacertidae 150 Lacerta mellisellensis Teiidae	6	787	1454	412	96	880	546	1486	4339	105
151 Ameiva undulatus Anguidae	6	819	1487	497	85	1098	690	1845	3478	195 154
Je dermonotus coeruleus	D	935	1527	305	101	711	576	939	4845	154

 a The classification parallels that in Figure 1.
 b The abbreviations for traits are: HW (head width), HL (head length), E-N (eye to nostril), N-L (nostril to lip), SL (shank length), FA (forearm), TL (toe length), VL (length of the vertebral column excluding the tail). Relative trait lengths (see equation 1) are given in parts per ten thousand thousand.

c Given in millimeters. This corresponds to the term $\sum_{\substack{j=a \ i=1}}^{p} a_{ij}$ from equation 1.

932

APPENDIX

Table 1. Mean trait lengths for 184 taxa.

T a	AXONOMIC GROUP ^a ad CODE NUMBER	SAMPLE SIZE	MPLE MEAN RELATIVE TRAIT LENGTHS ^b , (x _j IZE)	MEAN SUM OF TRAIT	
		(n)	HW	HL	E-N	N-L	SL	FA	TL	VL.	LENGTHS	
153	Xantusiidae Xantusia henshawi Varanidae	6	1032	1497	396	258	901	688	1041	4185	92	
154	Varanus niloticus Helodermatidae	4	619	1411	348	148	868	687	1276	4644	328	
155	Heloderma suspectum	6	1049	1327	324	139	716	667	846	4932	385	
	CLASS MAMMALIA Hominidae											
156	Homo sapiens	16	590	703	149	116	2359	1673	481	3929	1578	
157	Gorilla gorilla	11	688	1134	247	215	1656	1071	<u>и</u> и6	36/13	1701	
159	Pan troglodutes	12	62/1	1092	17/1	217	1726	2011	E07	2607	1/159	
159	Pongo pygmaeus Hylobatinae	6	711	1123	201	273	1518	2361	639	3174	1431	
160	Hylobates hoolock	12	515	<u>0Ш</u> 1	123	88	1750	2723	1176	3375	036	
161	H. lar Cercopithecinae	3	527	907	133	81	1857	2779	489	3228	838	
162	Cercopithecus aethiops	9	556	949	173	101	1692	1592	517	4420	794	
163	Macaca arctoides	5	624	1046	293	118	1555	1817	497	4050	845	
164	M. nemestrina Colobinae	13	615	1052	320	121	1712	1891	487	3802	931	
165	Presbytis entellus Phocidae	4	540	816	138	74	1872	1798	559	4205	1090	
166	Phoca vitulina Felidae	5	637	1391	226	48	1135	796	478	5290	1306	
167	Lynx rufus Canidae	8	515	1000	214	36	1468	1405	626	4737	1092	
168	Canis latrans 1	6	413	1258	471	25	1341	1332	564	4596	1389	
169	C. latrans 2	5	419	1294	484	30	1350	1424	571	4428	1356	
170	C. lupus	6	470	1248	428	35	1316	1434	589	4480	1809	
171	Urocvon cenereoargenteus	1 3	453	1348	410	21	1323	1203	417	4826	828	
172	U. cenereoargenteus 2 Procyonidae	10	463	1298	422	20	1327	1200	593	4675	904	
173	Procyon lotor Mustelinae	10	646	1357	372	37	1539	1465	485	4100	783	
174	Martes americana	13	532	1325	296	30	1258	992	527	5039	582	
175	Mustela vison 1	8	520	1279	255	44	1066	847	464	5526	490	
176	M. vison 2 Melinae	6	540	1295	263	42	1058	831	451	5519	512	
177	Taxidea taxus Lutrinae	6	681	1584	384	46	1024	1346	373	4561	762	
178	Enhydra lutris Geomyidae	10	547	1068	200	83	1152	922	667	5362	1193	
179	Thomomys bottae Heteromyidae	9	530	1477	646	41	1002	1019	374	4912	256	
180	Dipodomys merriami Castoridae	20	525	1386	973	98	1653	952	807	3606	199	
181	Castor canadensis Microtinae	11	783	1340	500	71	1373	1179	595	4159	958	
182	Microtus californicus 1	10	537	1498	518	78	1110	932	453	4873	178	
183	M. californicus 2 Cricetinae	11	483	1379	457	80	1045	893	405	5259	217	
184	Peromyscus mexicanus	20	560	1423	657	112	1274	952	582	4442	192	

 a The classification parallels that in Figure 1.
 b The abbreviations for traits are: HW (head width), HL (head length), E-N (eye to nostril), N-L (nostril to lip), SL (shank length), FA (forearm), TL (toe length), VL (length of the vertebral column excluding the tail). Relative trait lengths (see equation 1) are given in parts per ten thousand thousand. c Given in millimeters. This corresponds to the term $\sum_{i=1}^{p} a_{ij}$ from equation 1.

CAXONOMIC LEVEL OF COMPARISON	PAIRS OF TAXA [*] (referred to by code numbers)									
0.5 (populations)	7-8 42-43 135-136	14-15 44-49 142-143	16-17 45-46	34-35 47-48	36-37 53-54	38-39 125-126	40-41 128-129			
1.0 (subspecies)	4-5 134-135	9-10 168-169	20-21 171-172	87-88 175-176	89-90 182-183	108-109	134-136			
2.0 (species)	6-11 66-67 102-103 131-132	12-13 69-70 105-107 134-138	18-50 71-72 106-109 138-141	23-24 73-74 112-114 140-144	25-26 75-76 115-116 160-161	27-28 83-85 117-118 163-164	62-63 84-86 125-127 168-170			
3.0 (genera)	2-29 91-92 118-121 170-172	2-59 92-93 124-129 174-175	3-30 95-96 157-158	3-60 98-99 157-159	61-64 101-104 158-159	62-65 108-111 162-164	68-69 110-113 168-172			
4.0 (subfamilies)	85-96 100-134 158-160 175-178	87-95 108-118 159-160 177-178	92-95 117-125 162-165 183-184	92-96 122-138 164-165	93-95 123-129 174-177	93-96 124-132 174-178	99-127 157-160 175-177			
5.0 (families)	31-69 65-68 131-145 156-157 173-174	32-65 77-95 143-145 156-158 173-177	57-61 78-93 148-150 156-159 179-180	58-66 82-88 148-151 156-160	61-66 100-145 149-150 168-173	63-67 123-145 150-151 170-175	64-70 124-145 154-155 172-173			
6.0 (superfamílies)	2-80 104-146 147-153 160-165	22-94 113-148 148-155 167-168	51-79 145-153 150-152 167-173	52-95 146-147 152-153 167-174	55-92 146-152 153-155 179-181	61-83 146-155 156-164 180-181	66-96 147-148 158-162			
7.0 (suborde r s)	1-56 166-173	1-63 166-172	1-67 166-177	1-81 179-182	1-92 180-184	1-95 181-183	166-167 181-184			
8.0 (orders)	97-99 162-181	97-118 164-182	97-124 165-167	97-143 166-180	156-170 167-184	157–166 175–179	159-179			
11.0 (classes)	1-172	33-162	72-140	95-101	97-173	149-183				

Table 2. Pairwise comparisons used to examine the relationship between taxonomic distance and metric value

* Each hyphenated pair of code numbers refers to a pair of taxa. The code numbers for taxa appear in Table 1 of the Appendix.